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Abstract. Let E be an elliptic curve defined over an algebraic number field K and assume 
that some Weierstrass equation for E over K is given. Then an algorithm is described which 
yields a global minimal Weierstrass equation for E over K provided such a global minimal 
Weierstrass equation does exist. 

1. General Remarks. Tate's algorithm in [2], which is actually intended to give the 

conductor and Kodaira reduction type of an elliptic curve EK defined over K, 

where K is an algebraic number field, can be used to calculate a minimal (with 

respect to some discrete valuation of K) Weierstrass equation for EK' once some 

Weierstrass equation for EK is given. In the following we describe an algorithm 

which does the same. It is quite easy to write a computer program for the present 

algorithm, whereas Tate's algorithm needs greater effort and requires iteration. 

Moreover, the present algorithm may be useful in conjunction with Tate's algo- 

rithm for calculating the conductor, because implementing Tate's algorithm on a 

computer is much easier if one knows ahead of time that the Weierstrass equation 

for EK is minimal. 
In the following let K be an algebraic number field of degree n, let ? = O9K be 

the ring of integers of K, and let {w,, . . ., ,n) be any integral basis for ?. Let 

E = EK be an elliptic curve defined over K. We assume that E admits a global 
minimal Weierstrass equation over K; this is always the case for example if the 

class number of K is prime to 6. Details on elliptic curves may be found in [1]; we 

recall here only the following facts. 
Let y2 + a,xy + a3y = X3 + a2x2 + a4x + a6 be any Weierstrass equation for 

E over K. Then y'2 + ax'y' + a'y' = X'3 + ax'2 + a'x' + a' is also a 

Weierstrass equation for E over K if and only if there is transformation of type 

x = u2x' + r, y = U3y' + Us2x' + t, 

with r, s, t E K and u E K*. In this case the coefficients of the two equations and 

their quantities C4, C6, z and c', c', A', respectively, are related by the following 

formulas: 

uaj = al + 2s, 

u a2 = a2 - sa, + 3r_ S2, 
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u3at = a3 + ral + 2t, 

u4a4 = a4 - sa3 + 2ra2 - (t + rs)a, + 3r2 - 2st, 

ua6 = a6 + ra4 + r2a2 + r 3-ta3-rta-t2, 

4, 41 U 4C = C4, 

U C6 C6, 

ul2zA' = A 

The coefficients a,, a2, a3 of any integral Weierstrass equation for E over K satisfy 
the following congruences in terms of the quantities c4 and c6: 

al-C4 mod 8, a2 -a,-c6 mod 3, 

c a4 2 _4 _a a,a3 a,a2 + 8 mod 2, 

and moreover, if a =O mod 2, then c6 _ O mod 8 and 

2 -C6 a3 8- mod 4. 

We call an integral Weierstrass equation y2 + a,xy + a3y = x3 + a2X2 + a4x + 

a6 for E over K of restricted type, if 

al,,a3 (E aiwi I ai = O or I) a2 E(E aiwi I a; = 1, 0or I) 

Let OR be the set of all global minimal equations of restricted type for E over K. 
Then GZ =# 0, and we have an action of ? * on G1, where (9 * denotes the group 
of units in ?. Indeed, take any global minimal equation for E over K and make a 
transformation with u = 1 and suitable choice of r, s, t E ?, successively; this 
yields 'D =# 0. The action of C * is defined as follows. For u E (9 * and an 
equation y2 + a1xy + a3y = x + a2X2 + a4X + a6 in < we define an equation 
y2 + a1xy + a3y = x3 + a2x + a,x + a' in the following way: Let 

a,aE {4' aw I a= O or I} a { aiwE I aI i i Oor ) 

be such that 

ua= a' + 2s, u2a2= a2-sa' + 3r-S2, u3a3= a' + ra' + 2t, 

with s, r, t E ?. Finally define a' and a' by the equations 

a4 = u4a4 + sa - 2ra + (t + rs)a - 3r2 + 2st, 

a= u6a6-ra -r2a'-r3+ ta'+ rta' + t2. 

Then y2 + ajxy + ay = x3 + ax2 + a4x + a' is an equation in < and more- 
over, an action of ? * on 1? is defined in this way. If K = Q, then 1Z contains 
exactly one element. It follows from the action of ? * on 6)X that if x, y E ? are 
the quantities c4, C6, respectively, of an equation in %, then the same holds for u4X, 
u6y, where u E 0 * is arbitrary. 

Now let 

(*) y2 + ax+a3y = X3 + a2x2 + a4X + a6 
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be any given Weierstrass equation for E over K with ai E ? and with discriminant 
A. In the second chapter we describe an algorithm which leads from equation (*) to 
a global minimal equation of restricted type for E. The correctness of the algorithm 
follows from well-known general principles and the facts mentioned above. In 
particular concerning step (2) of the algorithm it is sufficient to consider the 
numbers u E ? up to associates. In the third section we describe an optimized 
algorithm for the case K = Q. This variation of the general algorithm was sug- 
gested by Joe Silverman, who saw a preprint of the original version of this paper. I 
am grateful to Silverman for his careful reading of the original version and for his 
suggested modifications. 

2. The Algorithm. 
(1) Compute the quantities c4 and c6 for the given equation (*): 

c = (a 2 + 4a2) - 24(a,a3 + 2a4), 

= - (al + 4a2)3 + 36(a 2 + 4a2)(a a3 + 2a4) - 216(a3 + 4a6). 

(2) Determine a complete set S of pairwise nonassociated numbers u E 0 
satisfying the following conditions: There exists xu,yu c ? such that 

u4xu = C4, u6yu = c6. 

(S is clearly finite.) 
(3) Choose u E S. 
(4) Choose a', a' E I aiwi I ai = ? or I , a' Ez I aii ai =1, 0 or I 

subject to the following conditions: 

a4xu mod 8, ad3-a6 -Yu mod 3, 

and additionally in the case a' = 0: 

YU= 0 mod 8 and a'2 _Yu mod 4, 

in the case a' = 1: 

a, a,+ x8 mod2. 

(5) Solve the following equations for a4 and a' successively: 

xU = (al2 + 4a') - 24(a'a' + 2a'), 

YU = - (a 2 + 4a')3 + 36(a 2 + 4a')(ala' + 2a') - 216(a3 + 4a'). 
If a' or a' is not in GO, then continue with (8); otherwise continue with (6). (We 
have xU = c' and yu = c', where c' and c' come from the integral Weierstrass 
equation, denoted by 

Fu,al,a;,aq3' given by the coefficients a', a', a', a', a'. IF 
has discriminant u 12. We test now whether Fu,ad as a' is an equation for E.) 

(6) Solve the following equations for s, r, t successively: 

ual = a + 2s, u2a = a2-sa, + 3r-s2, u3a = a3 + ra1 + 2t. 

If the values for s, r, t are not in (9, then continue with (8); otherwise continue as 
follows. 
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If the values for s, r, t are not related by the equations 

u4a4 = a4 - sa3 + 2ra2 - (t + rs)al + 3r2 - 2st, 
6' 

4 
2 32 

u a6 = a6 + ra4 + r2a2 + r3-ta3-t2 - rta1, 

then continue with (8); otherwise continue with (7). (]Fu,aw,ai,a' is an equation for E.) 
(7) Store the equation ru,a',a;a' and its discriminant, provided the store is empty. 

Then continue with (9). If the store is not empty, then continue as follows. 
Compare the discriminant of the equation in the store with the discriminant of 

Fu,al,ai,a': If the discriminant of the equation in the store divides the discriminant of 

Ua a' ai aj then continue with (9); otherwise continue as follows. 
Store the equation ru,a',a',a' and its discriminant, and cancel the old equation and 

its discriminant. Then continue with (9). 
(8) If all possible a', a' E { 1 aiofi a ai = 0 or 1), a' E { I= aiwi I ai = -1, 0 

or 1) subject to the conditions have already been chosen, then continue with (9); 
otherwise choose new a', a', a' and return to (5). 

(9) If all possible u E S have already been chosen, then continue with (10); 
otherwise choose a new u E S and return to (4). 

(10) Look at the store. (It is not empty and contains a global minimal equation 
of restricted type for E.) 

3. The Optimized Algorithm for K = Q. 
(2') Determine umax, the largest integer u satisfying the conditions of step (2). 
Factor uma = 2e23?3r with v prime to 6. 

(From general principles we know that 
(i) if we choose u = v in step (3), then we will get a successful test in step (6) for 

some choice of a', a', a; in step (4); 
(ii) if u = u, and u = u2 in step (3) both give a successful test in step (6) and 

ul, u2 are relatively prime, then u = u1u2 will also test successfully in step (6). 
Thus the general procedure is as follows.) 
(3') Determine the largest integer f2 satisfying 0 < f2 < e2 so that u = 2f2 in step 

(3) tests successfully in step (6) for some choice of a', a', a; in step (4). 
(3") Determine the largest integer f3 satisfying 0 < f3 < e3 so that u = 3f3 in step 

(3) tests successfully in step (6) for some choice of a', a;, a; in step (4). 
(3"') Choose u = 2f23f3v in step (3). (The test in step (6) is guaranteed to be 

successful, and the a', a', a', a', a' found will be the desired global minimal 
equation of restricted type for E.) 
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